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Abstract

We describe a systematic and efficient method of determining pseudo-atom positions and potentials for use in nano-
structure calculations based on bulk empirical pseudopotentials (EPMs). Given a bulk EPM for binary semiconductor
X, we produce parameters for pseudo-atoms necessary to passivate a nanostructure of X in preparation for quantum
mechanical electronic structure calculations. These passivants are based on the quality of the wave functions of a set of
small test structures that include the passivants. Our method is based on the global optimization method DIRECT. It
enables and/or streamlines surface passivation for empirical pseudopotential calculations.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

For computational nanoscience to become more routine, both in the context of applications and in the
exploration of new physics, all the pieces of the process must be automated. Here we present automation
of one such piece — surface passivation in the context of the empirical pseudopotential method — using a
state-of-the-art global optimization scheme, DIRECT [1], especially suited to this problem.

The empirical pseudopotential method has been very successful in studying the electronic structure of nano-
structures [2], and there are mature programs to fit bulk EPMs (throughout, we will use “EPM” to refer to
both the method and the actual pseudopotentials). However, one bottleneck in applying the empirical pseudo-
potential method to nanostructures is taking into account surface effects. Our method will improve this sce-
nario for the investigation of well passivated nanostructures.

In experiments, the dangling bonds at the surface of a semiconductor nanostructure are passivated either by
other semiconductors or by organic ligands [3]. Although the surface conditions of the structures vary, pho-
toluminescence (PL) measurements of appropriately passivated nanostructures reveal that the emission
originates from interior, “bulklike” states [4]. These observations suggest that an approach to passivating a
simulated nanostructure would be to attach “pseudo-atoms” to each dangling bond [5-7].
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Following the work of [5,6], for each dangling bond, characterized by surface atom element and number of
dangling bonds originating from that atom, a three parameter pseudo-atom potential is added to the potential
of the nanostructure. For a binary semiconductor compound nanostructure such as CdSe, this results in a 12
real parameter optimization problem. The advantage of the pseudo-atom potential approach is that the poten-
tials are determined once for an ensemble of small test structures and transferable to other structures of the
same material.

As the PL data suggest, the surface states near the bandgap are eliminated in a well passivated nanostruc-
ture. Thus, the desired effect of the pseudo-atom (i.e., the solution of the 12 parameter optimization problem)
is to obtain containment inside the nanostructure of wave functions corresponding to eigenvalues in and
around the bandgap. In [5] the parameters are chosen by forcing the band edge states to the interior of flat
Cd- and Se-terminated surfaces. In [6], the parameters are chosen so that the surface density of states of planar
InP surfaces matches that of PL data and local density functional theory calculations.

The optimization of the 12 parameters has heretofore been carried out by trial and error based on physical
intuition. Although successful in several circumstances, this approach has three major shortcomings. First,
physical intuition of a researcher varies by researcher. Second, it is extremely time consuming; finding accept-
able surface passivation parameters requires extensive human intervention, and the parameter space is large.
Third, it is not robust; there is no guarantee that the parameter space has been sufficiently sampled and
explored. Our method addresses these issues by defining a 12 real parameter optimization problem (an objec-
tive function and associated constraints) and solving it using the global optimization method DIRECT.
DIRECT has been found effective for problems such as ours in which the search domain consists of real vec-
tors within a bounded region. Our method is a way of enabling bul/k EPMs for any material to be used to cal-
culate the electronic states of structures having surfaces. As such, we offer an improvement in the methodology
of surface passivation parameter selection for increased reliability and efficiency, especially in enabling work
on new materials.

This work is in the context of electronic structure calculation for crystalline semiconductor nanostructures.
The electronic structure theory used here is density functional theory in the local density approximation,
solved non-selfconsistently via the empirical pseudopotential method. The specific systems reported on here
are tetrahedrally bonded binary semiconductor compounds. The method, however, is not restricted to such
systems, and could be applied in the same way to elemental semiconductors (e.g. Si, Ge), alloys (e.g. InGaP),
and other crystal structures (e.g. PbSe in the rocksalt crystal structure).

In Section 2 we describe in detail our formulation of surface passivation as an optimization problem and
our application of DIRECT to it. In Section 3 we present results for the passivation of two materials. In
Appendix A we discuss some of the mathematical underpinnings of the method.

2. Method

Here we describe in detail our passivation method. First we define the 12 real parameters of the optimiza-
tion space that describe the pseudo-atoms and the bounds on the domain that is explored. Next we describe
the objective function, including its dependence on the electronic states of five test structures, constraints on
the eigenvalues of these states, and a measure of quality of these states. Finally, we describe the sequence of
steps in the process of finding the parameters for the pseudo-atoms.

2.1. Parameter space

Following the work of [5,6], for each dangling bond a pseudo-atom passivant with a Gaussian potential is
added at some length yd along the ideal bond of length d between the surface atom and the missing atom. The
potential of the pseudo-atom is given by the expression

o(r) = oe PRI/, (1)

Here R = R(y) is the location of the passivant, and o and ¢ represent the amplitude and width of the Gaussian
potential, respectively. All the constants are in atomic units; « is in hartree, and ¢ is in Bohr (y is unitless). The
set {«, 0,7y} are parameters that are fit to produce desired effects.
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Different passivants are required for different surface atom elements and numbers of dangling bonds. We
deal exclusively with binary semiconductor compounds on ideal or “relaxed’ crystal lattice sites, for example,
CdSe and InP. They form tetrahedrally bonded zincblende or wurtzite structures. We index the four passivants
as follows:

. cations with 1 dangling bond (“c1”),
. cations with 2 dangling bonds (“c2”),
. anions with 1 dangling bond (*““al”),
. anions with 2 dangling bonds (“a2”).

RS R N

Atoms with more than two dangling bonds are removed prior to surface passivation. This results in a total
of 12 real parameters to fit. Further details of the test structures are discussed in the following section.

The electronic structure calculation is performed in Fourier space, and thus the real space parameters have
associated g-space parameters. Transforming Eq. (1) to Fourier space [8], we obtain

v(q) = am' 3P tRe (a2’ (2)

The effect of y is introduced in real space through the location of the passivant in the input configuration. Now
let a = an' 6>, b= 6/2, ¢ =y. This defines a mapping between the parameters {«, §,7} in real space and {a,b, ¢}
in g-space. Our system seeks the optimal set of 12 parameters ¢ = {a;, b;, c,-}?zl, where the passivant potential
for passivant type i is defined by

vi(q) = qgtRie O, (3)

with the passivant located a distance c¢; along the ideal tetrahedral bond from the passivated atom to the
passivant.

2.2. Objective function

To continue we need a precise measure of the quality of passivation represented by a set of parameters, i.e.
we must formulate the objective function of our optimization problem. The goal is the passivation of large
nanostructures. These may contain many instances of all the passivants, which would be chosen such that
when we calculate the near band edge electronic states of the nanostructure, those states would not be surface
states. However, the calculation of electronic states of such structures is too computationally intensive to be
used in the passivation optimization. Therefore, following [5,6], we consider an ensemble of small structures
such that the pseudo-atoms found to passivate the ensemble of small test structures will be used to passivate
nanostructures of arbitrary shape. No single structure contains all the passivants, but together all are repre-
sented. In addition, small structures have larger quantum confinement, which provides stronger tests for sur-
face passivation. Further, the set of structures allows critical points in the Brillouin zone (e.g. K, L, X, W) to
be represented so that the surface states occurring at these point in the Brillouin zone of a real nanostructure
can be accurately produced.

For each test structure we require the conduction band minimum (CBM) of the passivated structure to be
above that of the corresponding bulk solid. (Knowledge of the bulk band edges allows us to find the CBM; it is
the first state above a known “‘reference energy’’ inside the bulk bandgap.) Similarly, we need the valence band
maximum (VBM) to be below the bulk level. These constraints represent the effect of quantum confinement.
Formally, we can write this constraint as g(&) > 0 for an appropriately defined g.

The measure of quality of a passivation is a measure of the extent to which the CBM and VBM states are
not on the surface. To make this measure precise, we integrate the squared wave function across the interior
(“core™) of a structure. Note that this involves explicit consideration of the wave function of the CBM and
VBM states, not just the eigenenergies.

We consider two kinds of structures — spherical quantum dots and oriented slabs. The slabs represent struc-
tures with planar terminating surfaces. We define the core of a spherical dot of radius r to be the central sphere
of radius %r. Note that the volume is (% )3 ~ 0.4 of the dot. For planar slabs, we begin with a supercell having a
certain orientation. For example, a [110] oriented slab has a z-axis in the [110] direction. The supercell is then
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filled halfway along this axis with the material in question, and the rest of the supercell is left as vacuum (i.e.
empty). For a slab of thickness d, the supercell has z-axis of length 2d. The core is defined to be the inner 3 1 5d of
the slab. In our system there are two spherical dots of radius ~5.5 A. “Dot 17 is cation centered and requlres
passivants cl and a2 (see Fig. 1). “Dot 2” is anion centered and requires passivants al and ¢2. And there are
three slabs of thickness ~20 A. These slabs, of orientations [001],[110], and [111], have 16, 8, and 22 atomic
layers, respectively, and an equal amount of vacuum. They require passivants c2 and a2, cl and al, and cl and
al, respectively. Table 1 lists the atom counts for our test structures.

These structures are created in the following way. First, a large supercell of the appropriate crystal structure
— here, zincblende — is created. Now atoms lying outside the dimensions of the structure we are creating (e.g.
for a dot centered in the middle of the large supercell, atoms whose distance from the center is greater than the
chosen dot radius) are removed. This leaves atoms at the surface of the dot that are not fully bonded (i.e. some
of whose coordinating atoms have been removed). These are the surface atoms we must passivate. For each
such atom, we count how many dangling bonds it has (i.e. how many of the atoms it was bonded to in the
large supercell were removed). If an atom has more than two dangling bonds, we remove it to prevent overly
rough surfaces. Removal of an atom can result in a neighbor of that atom having more the two dangling
bonds, so we repeat the process until there are no such atoms left. If an atom has one or two dangling bonds,
we add the appropriate passivant atom cl, c2, al, a2 described above, that is, at the distance along the missing
bond specified by the ¢; parameters. Thus, for example, dotl requires only passivants cl and a2 because the
atoms that lie on the surface are all either cations with one dangling bond or anions with two dangling bonds.
Note, too, that the distances ¢; are parameters we are optimizing, thus the test structures are regenerated at

&
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[001] slab top surface [110] slab top surface [111] slab top surface
T B ¥ J L ﬁ(\(

[001] slab bottom surface  [110] slab bottom surface  [111] slab bottom surface

Fig. 1. The test structure surfaces. The large, dark (in color, red) circles are Cd atoms. The large, light (in color, yellow) circles are Se
atoms. The small circles are the passivant atoms. (In color, cl is silver, c2 is cyan, al is pink, and a2 is green.) The entire dotl and dot2
structures are shown. For the slabs, the top and bottom surfaces are shown. The slabs continue infinitely in the plane orthogonal to the
surface normal. Note the surface orientations and surface atom types determine the passivants required. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Table 1

Atom counts of test structures

Test structure Number of cations Number of anions Number of passivants
Dot 1 13 16 36

Dot 2 16 13 36

[001] slab 16 16 8

[110] slab 16 16 8

[111]slab 44 44 8

every iteration of the search. Fig. 1 illustrates the surface environments and resulting passivant atoms (for a
particular set of passivant atom distances) used for the five test structures.

The sufficiency of the objective function described here — geared toward preventing band edge states from
being surface states — lies in the results of its use rather than in complete theoretical justification; this basic
approach has a successful history in the literature [5,6]. Furthermore, explicit modeling of the organic mole-
cules at the surface of a nanostructure is outside the scope of the electronic structure method used here. We
reiterate that our main contribution is automation of this approach rather than justification of it.

In summary, the objective function f{¢) is the geometric average of the core wave function densities of CBM
and VBM over all the test structures. It is a number between zero and one representing the proportion of the
wave function contained, on average, in the core.

2.3. Domain of ¢&

Recall that ¢ = {a;, b;, c,-}f:1 defines a certain passivation. To further specify the optimization problem, we
must state the domain of &. The distances ¢; are proportions of the ideal bond distance. It is reasonable to
assume that the passivant is no farther than the missing atom would be, and that it is not extremely close
to the atom it passivates. Therefore we constrain the ¢; to the interval [0.1, 1.0]. By considering that the Gauss-
ian potential must decay to zero as both |g| and |r| become large, we arrive at lower and upper bounds for the
width parameter b; of 0.1 and 1.5, respectively. The amplitude parameter differs between cation and anion pas-
sivant, with the cation having positive amplitude and the anion negative. This choice is motivated by the phys-
ics. Cations have lower electronegativity than anions, so a positive ligand passivation potential will ensure that
they will lose electrons, whereas the anions have higher electronegativity, so a negative passivation potential
will ensure that they gain extra electrons. Further, the maximum amplitude is determined by the magnitudes of
the corresponding bulk pseudopotentials. For convenience, we rescale the amplitudes of all the passivants for
all the EPMs studied by a constant value of 12.028 (which is v(g = 0) for the existing CdSe passivation), trans-
forming the amplitude parameters «; into “‘weights” w; having |w,| ~ 1. Together the domain of ¢ is a hyper-
rectangle we refer to as &. Specifically, we have chosen the following limits:

0.1 < cation weight w; < 2.0, i € cation,
— 2.0 < anion weight w; < —0.1 i € anion,

0.1 < width b; < 1.5,

0.1 < distance ¢; < 1.0.

2.4. The DIRECT optimization method

We have thus formulated our surface passivant optimization problem as
max f(&) st g(&) >0.

e
This is a nonlinear constrained global optimization problem.

However, the structure of & — a hyperrectangle of real vectors — makes this problem especially suited to the
global optimization method DIRECT. DIRECT is a deterministic algorithm for global search introduced in
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1993 [1]. The name is a mnemonic for ‘divide’ and ‘rectangle’ because it involves systematically dividing rect-
angles in its search for a global optimum. In particular, the method is founded on an explicit recognition of the
tradeoff between global and local search. In DIRECT, the search begins at the center of the hyperrectangle 2.
Subsequent search is directed toward larger unexplored rectangles (representing global search) as well as areas
that have promising objective function values (representing local search). The simultaneous exploration of the
entire space of tradeoffs between global and local search is a powerful innovation built into the method. It is
related to finding and exploring the entire “Pareto Front” of the global/local tradeoff [9]. This connection, and
further details of the method, are pursued further in Appendix A. We emphasize that DIRECT is a true global
optimization method; it does not require an initial estimate of the solution to find the global optimum. Thus
our method can start with minimal input by the physicist.

DIRECT is one of many optimization methods. For our purposes it has the advantages of being (i) global
and (ii) deterministic; beyond a good solution, we also get a robust, comprehensive scan of the parameter
space. This is important, as the objective function landscape for this problem is largely unknown. The dimen-
sionality of our problem is also well suited to DIRECT. DIRECT appears to be a good candidate for prob-
lems of dimension up to approximately 20-30. This size space would encompass most passivation search
problems, such as those arising from considering a different crystal structure with coordination number
greater than four.

2.5. Implementation

Our implementation is built on a parallel Fortran implementation of DIRECT available at http://
wwwd.ncsu.edu/eos/users/c/ctkelley/www/optimization_codes.html. Our system involves many components.
Specifically, it is built around the electronic structure program PESCAN [10,11]. The method of evaluating
the objective function for a given set of passivation parameters involves the following steps: Generate atomic
configurations of dots of chosen radii and slabs with chosen thicknesses with the passivation distances and
passivant weights specified. Generate four pseudopotential files, one for each passivant, using the width
parameters. For each structure, find the eigenvalues and eigenstates for the CBM and VBM. Check whether
the constraint that the CBM and VBM straddle the bulk band edges is satisfied. If the constraint is not met, set
the objective function to 0. Note we are thus enforcing our constraint through a penalty function. This is really
our only choice, because the evaluation of the constraint function is a complicated, expensive, nonlinear func-
tion of the passivant parameters. Integrate the charge density of these states over the “core” of the structure. If
the core density is below a user specified threshold, we have found a surface state; reject this passivation by
setting the objective function to 0. This is a penalty function enforcing the constraint that the CBM and
VBM should not be a surface state for any of the test structures. Finally, return the geometric average of
the two core integrations over all the test structures to DIRECT as the objective function value.

To use this system to generate a passivation scheme for a bulk EPM of a given material, users need only
supply the necessary components of the bulk EPM, along with a short input file that describes the particular
settings used by the electronic structure solver for this EPM.

3. Results

Here we discuss the results obtained for CdSe and InP. We divide the discussion into two parts correspond-
ing to the optimization process itself and the actual passivations obtained.

3.1. Optimization

DIRECT is a nearly parameterless global optimization method. Aside from the upper and lower bounds of
the search variables, discussed above, there are few parameters to work with, consisting mainly of a set of tol-
erance and stopping criteria parameters. Because the search quickly plateaus to small fluctuations in the objec-
tive function near the optimum value, we generally turn off all stopping criteria.

Fig. 2 shows the typical progress of the optimization: a short period of rapid improvement followed by a
longer plateau of slow improvement. This is typical of global optimization methods [12,13].
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Fig. 2. Typical progress of an optimization run. Each dot represents one set of the 12 passivation parameters. The x-axis represents the
progress of an optimization run. The y-axis is the objective function value for each set of parameters. It is the average containment of the
squared wave function of the conduction band minimum and valance band maximum in the core region of the five test structures.
Typically one observes initial rapid improvement followed by gradual refinement of good solutions. This suggests that a wide range of
acceptable parameters exists, as has been noted in [6]. Also, it suggests that we may add additional criteria to our objective function if we
need a passivation with properties beyond band edge wave function containment.

3.2. Passivation

We consider two materials, CdSe and InP. First, we have compared our CdSe results with the passivation
parameters of [5]. Our optimization scheme produces a set of parameters that, according to our objective func-
tion, is slightly better. Specifically, using their parameters, the wave functions are 72% contained in the “core”,
and using the parameters found by DIRECT, the wave functions are 78% contained. The small improvement
is not really the point. More important is the fact that our parameters were found by a systematic method
involving no human intervention. As also shown in Fig. 2, there are multiple solutions of similar quality. This
situation is acceptable because as long as the surface is well passivated, the electronic structure inside the nano-
structure is independent of the details of the passivation [6]. Fig. 3 shows a 447 atom (including passivants)

Fig. 3. Four hundred and forty-seven atom CdSe dots passivated using our results (left) and those of Ref. [5] (right). The small dark grey
(red) and light grey (yellow) spheres are Cd and Se atoms, respectively. For clarity, the passivation atoms are not shown. The grey (aqua)
surfaces are isosurfaces of the conduction band minimum wave function squared. Shown is the isosurface corresponding to the isovalue
above which is contained 90% of the wave function. The contours for higher isovalues are inside the surface shown. Note the similar,

adequate containment of the wave functions in both cases. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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CdSe dot passivated with the parameters we found and those of [5], respectively. Fig. 4 shows an example of
the passivation achieved for the [111] oriented slab.

Second, we have optimized passivants for the InP semiempirical pseudopotential of [6]. As Table 2 shows,
our passivation is again only slightly better on average than the hand tuned one. However, it is clear based
both on the core density and visualization of the squared wave function that the [111] slab CBM state for
the passivation from [6] is a surface state. By contrast, our optimization scheme ensures that the optimum pas-
sivation will not result in CBM or VBM states which are surface states for any of the test structures by explic-
itly penalizing passivations that generate such states.

Also, we have verified that the surface states were forced far enough out of the bandgap that there are sev-
eral states above the CBM and below the VBM that are also not surface states. In fact, our objective function
considers as many states above and below the gap as the user desires.

Table 2 summarizes our results. We note some regularity:

e The optimal anion passivants are typically closer to the atoms they passivate than are the cation
passivants.

e Potentials of optimal passivants of anions with 7wo dangling bonds are typically more spread out in ¢
space (small width parameter) with low amplitude. They are usually especially close to the anions they
passivate.

This regularity is not expected a priori; it is the outcome of our optimization and depends on the material
properties and the bulk pseudopotentials that describe the material. Passivations of other materials may or
may not have these characteristics.

Finally, consider Fig. 5, where we have plotted the bandgap as a function of radius for a series of quantum
dots. We see the expected confinement-induced increase in bandgap.

L = SRR R e R e
WagPasPag ey Dag Vg Dlag g *
SPRORC ey Vg Vg Tan

Fig. 4. [111] oriented CdSe slab passivated by our method, and the conduction band minimum wave function squared. The colors are as
in Fig. 3. Again, the passivant atoms are not shown. We see that at this, the 85% isovalue, the isovalue surface is fully contained in the slab.
Thus more than 85% of the wave function is contained in the interior of the slab. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Table 2
Passivant parameters and objective function values found by our method and those used in [5 and 6]

CdSe passivants InP passivants

Current From [5] Current From [6]
Wy 1.89 1.00 1.68 1.18
Wy 1.26 1.00 1.68 1.90
ws —1.26 —0.60 —1.68 —-0.93
Wy —0.84 —0.60 —1.05 —0.78
by 0.64 0.75 0.80 0.45
by 0.64 0.75 0.64 0.70
b 0.33 0.75 0.33 0.50
by 0.33 0.75 0.80 0.75
13 0.45 0.55 0.35 0.25
e 0.55 0.55 0.25 0.50
3 0.25 0.25 0.25 0.25
N 0.28 0.30 0.25 0.25
Function 77.6 71.2 71.8 65.1

The objective function (‘Function’) is the average percentage of the VBM and CBM wave function contained in the core of the five test
structures. w; are the weights (amplitudes), b; are the widths of the Gaussians, and ¢; are the distances along the ideal bond. The index ““i”’
denotes the surface atom types defined in Section 2. Though the average core density is similar for our passivation and the hand tuned

passivation of [6], at least one of the band edge states for the passivation in [6] is a surface state.

4.5
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Fig. 5. Bandgap versus radius for a series of quantum dots passivated by our method. Note the expected quantum-confinement induced
increase in bandgap with reduced dot size.

4. Conclusion

In this paper we have presented an automated methodology for generating surface passivations for bulk
empirical pseudopotentials. Incorporated into a larger computational nanoscience infrastructure, our work
represents a much needed improvement in the usability of the empirical pseudopotential method for electronic
structure calculations of nanostructures.
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Appendix A. DIRECT and the optimal tradeoff of local and global search

Here we further pursue the connection between DIRECT and the concept of a Pareto Front. To our knowl-
edge this connection has not been explicitly made before. First, however, we further clarify the search mech-
anism of the DIRECT algorithm. As described in [1], at each iteration of the search, there is a set of rectangles
of varying sizes that have been sampled (the objective function value at the center of the rectangle is known).
An iteration then involves the following steps:

1. Identify a set of “potentially optimal” rectangles (see definition below).
2. Evaluate the objective function at specific points in these rectangles.
3. Based on the objective function values, divide these rectangles for further search.

These steps lead to a new set of rectangles to consider for the next iteration. Fig. A.1 illustrates the division
of the domain & into rectangle of varying sizes for a particular cross section of variables for our CdSe pas-
sivation optimization.

We now consider the connection between DIRECT, multicomponent optimization, and the optimal trade-
off of global and local search. In multicomponent optimization, with simultaneous objective functions that we
cannot combine into a single objective function by, for example, a linear combination, the best one can do is
the so called Pareto front. This is defined to be the set of objective function values representing points x in the
space of search variables that “cannot be improved on” in the following sense: Given n objective functions
{fi}_,, all of which we seek to maximize, the Pareto optimal set is defined to be those points x for which there
is no y such that both

(1) f;(») = filx) for all i, and
(i) f;(v) > f;(x) for some j.
The Pareto front is the set of objective function values of the members of the Pareto optimal set.

The connection with DIRECT is through the method of choosing which rectangles to subdivide. At each
stage, the entire set of points at which the objective function has been evaluated, and the rectangles they
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Fig. A.1. A two-dimensional cross section of DIRECT’s subdivision of the search domain Z. The rectangles and diamonds at their centers
represent regions and sampled points at which we have evaluated the objective function. The algorithm proceeds by preferentially
subdividing rectangles in which higher quality solutions have been found. Thus the smallest rectangle is where the best solution has been
found. At the next iteration, the algorithm will subdivide the potentially optimal rectangles; which are, roughly, the rectangles of each size
with the best objective function value (see text).
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Fig. A.2. Illustration (for simulated data) of how DIRECT chooses which rectangles to further subdivide, and connection to concept of
Pareto front. The small circles represent all the rectangles that have been searched. The squares are potentially optimal rectangles on the
convex hull (dashed line), which will be further searched in the next iteration. The crosses are the rectangles in the Pareto optimal set for the
multicomponent optimization problem of minimizing functional value and maximizing rectangle size. Note the rectangle in the Pareto
optimal set (symbol: X) that is not potentially optimal (symbol: square).

represent, are considered. Let f{x) be a function we are trying to minimize (DIRECT is stated and imple-
mented in terms of minimization, so we switch our orientation here), and let z; be the center of rectangle i
of volume d;. A rectangle j is potentially optimal if there is some K such that

(1) f(z;) — Kd; < f(z;) — Kd; for all i, and
(11) f(zj) - Kd/ < fmin - 6|f‘min|-

Here, fiin is the best function value found so far, and € is a parameter that can be tuned to prevent the
system from subdividing extremely small rectangles. Graphically, the meaning of this definition is that the
potentially optimal rectangles are those that lie on the lower right portion of the convex hull of all rectangles
searched, considered in a coordinate system where the x-axis is the rectangle size and the y-axis is the objective
function value at the center of the rectangle (see Fig. A.2).

Now consider the family of functions fx(z;) = —Kd;, minimized for large rectangles. Then the potentially
optimal rectangles are (modulo a technical distinction — the version of DIRECT explored in [15] is exactly
searching the Pareto front at each iteration) just those that lie on the Pareto front of the multicomponent opti-
mization problem

min f and min fx.

And these problems are precisely the classic tradeoff between local refinement (f'is minimized for small rect-
angles where a good function value is already known) and global exploration (fx is minimized for large rect-
angles within which known solutions may be of lower quality, but which may yield high quality solutions on
further exploration). Fig. A.2 illustrates the connection. The search performed by DIRECT is thus seen — in
the precise sense of Pareto optimality — to be optimally balanced between local refinement and global
exploration.
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